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Electronic structure of Ba3CuSb2O9: A candidate quantum spin liquid compound
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Using density-functional methods, we study the electronic structure of Ba3CuSb2O9, a candidate material for
the quantum spin liquid behavior. We study both the triangular lattice as well as the recently proposed hexagonal
lattice structures with flipped Cu-Sb dumbbells. The band structure near the Fermi energy is described very well
by a tight-binding Hamiltonian involving the Cu (eg) orbitals, confirming their central role in the physics of
the problem. A minimal tight-binding Hamiltonian for the triangular structure is presented. The Cu (d9) ions
(a single eg hole in the band structure) present in the compound are expected to be Jahn-Teller centers, while
the nature of the Jahn-Teller distortions in this material is still under debate. Solving a simple model by exact
diagonalization, we show that electronic correlation effects in general enhance the tendency towards a Jahn-Teller
distortion by reducing the kinetic energy due to correlation effects. Our density-functional calculations do indeed
show a significant Jahn-Teller distortion of the CuO6 octahedra when we include the correlation effects within
the Coulomb-corrected GGA+U method, so that the Jahn-Teller effect is correlation driven. We argue for the
presence of a random static Jahn-Teller distortion in the hexagonal structure rather than a dynamical one because
of the broken octahedral symmetry around the CuO6 octahedra and the potential fluctuations inherently present
in the system caused by a significant disorder, which is believed to be present, in particular, due to the flipped
Cu-Sb dumbbells.
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I. INTRODUCTION

Geometrically frustrated magnets are of considerable cur-
rent interest owing to the novel magnetic ground states that
they might possess [1,2]. Frustration leads to a massively
degenerate ground state, which has been observed in the
spin ice systems such as Dy2Ti2O7 [3], where the massive
degeneracy manifests itself as a finite entropy at zero temper-
ature. Analogous to the water ice system studied long ago by
Pauling [4,5], the classical spin ice systems are characterized
by large magnetic moments so that the fluctuations stop as
temperature is lowered, with the system eventually settling
down into the massively degenerate ground state with a finite
entropy. It has been suggested that if the spin is small (e.g.,
S = 1/2 or 1), the zero-point quantum fluctuations may remain
even at T = 0, resulting in a quantum spin liquid state. Such
a state would be characterized as nonmagnetic, though with
well-formed local moments, which are in addition entangled
with one another over long distances [2]. Even though the
original proposal of Anderson [6] about the existence of
the quantum spin liquid state was made as early as 1973,
the discovery of it in real materials has remained elusive, even
though its classical counterpart, the spin ice state, has now
been established in several systems.

Recently, Ba3CuSb2O9 has been proposed as a possible
candidate for the quantum spin liquid state, since in addition
to the essential requirements of the small spin and frustration,
it shows a linear-T specific heat behavior and no magnetic
order, both characteristics of the spin liquid state [4,7,8]. The
Cu S = 1/2 state, responsible for the low spin of the system,
indicates a Cu (d9) configuration with degenerate electron
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states coupled to the lattice via the Jahn-Teller (JT) interaction.
However, the lack of a static JT distortion in the compound
has been a puzzling issue for quite some time and in fact a
recent paper has suggested that the JT effect may be dynamic,
so that a static distortion is not observed [9]. Other authors
have suggested a random static JT distortion in the compound,
where the distortion axes of the individual CuO6 octahedra are
oriented randomly due to disorder.

To address these issues and to understand the nature of
the electron states in general, we study here the electronic
structure of Ba3CuSb2O9 both in the triangular and the
recently proposed hexagonal structure by performing density-
functional calculations. Even though the material currently
exists in the hexagonal structure, we present our studies for
both triangular and hexagonal structures in this paper, since
there is an ongoing attempt [10] to synthesize it in the triangular
structure as well, e.g., growing under an applied electric
field (which may suppress the flipping of the Cu-Sb dipoles
resulting in the triangular structure). Our method included
the exchange-correlation functional within the generalized
gradient approximation (GGA) and its Coulomb corrected
version (GGA+U) as well. We find that the band structure
near the Fermi energy, which consists of Cu (eg) states, may
be described by an effective Cu (eg) Hamiltonian, obtained
by folding in the effects of the other orbitals via the Löwdin
perturbation; the form of the Hamiltonian is explicitly given
for the triangular case.

An insulating solution is obtained from the GGA+U
calculations. Within the GGA, we find no JT distortion of
the CuO6 octahedra, which is suppressed due to a relatively
strong kinetic energy as compared to the strength of the JT
interaction. As is well known, the Coulomb correlation reduces
the kinetic energy in general, so that a JT distortion becomes
more favorable as the JT-suppressing kinetic energy becomes
weaker. We illustrate this with the exact diagonalization of a
simple model for a single Cu hexagon. Indeed, the GGA+U
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results for the triangular lattice do indicate presence of a
JT distortion. For the hexagonal lattice, the crystal structure
is such that the symmetry axes of the individual CuO6

octahedra are oriented in different directions. We argue that
this together with lattice disorder due to disordered flipped
Cu-Sb dumbbells makes a random static JT distortion more
likely in the system rather than a dynamical JT effect. This
is consistent with the random static JT distortions suggested
from several experiments.

The paper is organized as follows. We begin with a
discussion of the crystal structure both for the triangular and
the hexagonal lattices in Sec. II, followed by the density-
functional electronic structure for both cases in Sec. III. An
effective tight-binding 2 × 2 Hamiltonian for the Cu eg states,
which are the important states at the Fermi energy, is given
in Sec. III A [Eqs. (5) and (6)] after including the effects
of the O-p orbitals via the Löwdin downfolding procedure.
We propose that this effective 2 × 2 Hamiltonian together
with a Hubbard U term and an appropriate E ⊗ e Jahn-Teller
coupling term [11,12], discussed in Sec. IV A 2, is a minimal
model for the description of the electronic structure for the
triangular lattice. A similar minimal Hamiltonian for the
hexagonal lattice may be obtained following the procedure
in Sec. III A, but its explicit form is not given here.

Section IV is devoted to a discussion of the Jahn-Teller
effect. No Jahn-Teller distortion is found from the density-
functional structure optimization with the GGA functional
without the Coulomb U correction, while the GGA+U calcula-
tions yield a finite Jahn-Teller distortion and subsequently lead
to an insulating solution. Section IV A illustrates the tendency
of the kinetic energy to suppress the Jahn-Teller distortion by
considering (i) a simple two-site model and (ii) the triangular
lattice relevant for the present case. Next in Sec. IV B we
make an important point that electronic correlation effects
enhance the tendency towards the Jahn-Teller distortion, in
essence by suppressing the kinetic energy. This is illustrated by
exactly solving a model many-body Hamiltonian for a single
hexagon with and without a Hubbard U term using exact
diagonalization. Density-functional results for the present
compound with the GGA+U functional, which takes into
account the correlation effects within the density-functional
theory, are presented in Sec. IV C. In Sec. IV D we argue for
a static but random Jahn-Teller distortion in the system rather
than a dynamical Jahn-Teller effect, both of which have been
debated in the literature. Finally, some concluding remarks are
made in the summary, Sec. V.

II. CRYSTAL STRUCTURE

There are two different crystal structures for Ba3CuSb2O9

proposed in the literature [7,13], which are closely related
to each other and we consider both in this paper. The first
structure, proposed quite early on by Köhl [7], has triangular
layers of Cu atoms, which are well separated by intervening
layers of the remaining types of atoms. The crystal structure
is made up of a framework consisting of corner-sharing SbO6

octahedra and face-sharing CuSbO9 bioctahedra. The middle
layer of the three O atoms within the bioctahedra are connected
to the Cu and the Sb atom forming the CuO3Sb dumbbells (we
call these the Cu-Sb dumbbells in the rest of the paper). The

FIG. 1. (Color online) A single plane of Cu in the triangular
lattice structure, showing the dominant electron hopping paths
Cu-O-Sb-O-Cu. The corners of three neighboring CuO6 octahedra
are connected via an Sb atom, which lies above the center of the
triangle. Shown also are the local coordinate axes for one of the Cu
atoms used to define the local Cu (eg) orbitals, which form the bands
near the Fermi energy. All Sb atoms shown here occur on a plane
above the Cu layer and are labeled Sb1, while a second set of Sb
atoms, labeled Sb2 and not shown here, occurs directly below the
Cu atoms, connected to the Cu through three O atoms, indicated by
−x, −y, and −z, forming the CuO3Sb “dumbbell” (see Fig. 2). In
the hexagonal structure, a third of these dumbbells are flipped by
interchanging Cu and Sb2, so that the remaining two-thirds of the Cu
atoms in the plane form a hexagonal lattice. A less important hopping
path consists of Cu-O-Ba-O-Cu, with the Ba atom connected to the
O atoms below the plane in a manner similar to the Sb atoms as
indicated in the figure.

Cu ions occupy the 2b Wyckoff site of space group P 63mc,
and this site forms the triangular lattice in the ab plane (Fig. 1).
The structure can be seen as two-dimensional magnetic layers
of Cu atoms organized on a triangular lattice, with the layers
separated by intervening layers of nonmagnetic atoms (Fig. 2).

According to the more recent results of Nakatsuji et al. [13],
the crystal structure is hexagonal with the space group
P 63/mmc. This structure, illustrated in Fig. 3, is derived

FIG. 2. (Color online) Crystallographic unit cell of Ba3CuSb2O9

in the triangular lattice structure.
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FIG. 3. (Color online) The hexagonal structure, which is ob-
tained from the triangular structure of Fig. 1 by inverting a third
of the Cu-Sb dumbbells as discussed in the text. The hatched Cu′

and Sb atoms are the results of the dumbbell inversions (interchange
of Cu and Sb in the dumbbell). The hatched Sb came from two
layers directly below it and took the place of a Cu atom, spoiling the
triangular lattice, while the Cu atom that was present there descended
two layers below as a result of the dumbbell inversion. The numbers
next to the atoms indicate the consecutive layer numbers above the
hexagonal Cu plane (atoms in this plane are unnumbered). Two
consecutive Cu hexagonal planes are six layers apart, but shifted
with respect to one another such that the next hexagonal layer Cu
atom occurs directly above Cu′.

from the triangular structure by taking a third of the Cu-Sb
dumbbells and interchanging the Cu and Sb atoms, so that
the remaining Cu atoms in the plane form a hexagonal lattice
instead of the original triangular lattice. A rationale for this
structure is that since each dumbbell carries an electric dipole
moment caused by the charge difference between Cu2+ and
Sb5+, the electrostatic energy is minimized if the neighboring
dipoles are aligned antiparallel to one another to the extent
possible. In fact, from our density-functional calculations
with the GGA, we do find that the hexagonal structure is
energetically favorable over the triangular structure by an
energy of 0.1 eV per Ba3CuSb2O9 formula unit. In the
hexagonal structure, two-thirds of these dipoles are aligned
along the c axis, while the remaining one-third are aligned
antiparallel to them, as a result of the dumbbell inversion
(Fig. 4). Note that the triangular structure has two formula
units (Ba3CuSb2O9)2 in the crystalline unit cell, while the
hexagonal structure has six.

The interchange of the Sb and Cu atoms in the hexagonal
structure also modifies the electronic hopping paths. The Cu
atoms that move out of the plane (Cu′ in Fig. 3) no longer
participate in mediating exchange interactions between the Cu
atoms on the hexagonal plane, as they have a much longer
exchange path. There is a Cu′ atom (not shown in the figure)
two layers directly below the hatched Sb atom as a result of
the dumbbell inversion. The Cu′ atom shown in the figure is
four layers above the hexagonal plane and came there as a
result of the Cu-Sb interchange occurring in the next higher

FIG. 4. (Color online) A Cu plane in the triangular lattice struc-
ture (top) and the interchange of the Cu-Sb2 atoms, highlighted
in green, in the hexagonal lattice structure (bottom). In the latter,
two-thirds of the Cu atoms in the original triangular lattice structure
remain on the plane, while a third of the Cu atoms move out of the
plane as shown in the bottom figure.

Cu hexagonal plane, six layers above the Cu plane shown in
the figure. The Cu′ atoms spoil the symmetry of the hexagonal
structure and in addition introduce new hopping paths between
the Cu atoms, while destroying some old ones.

III. ELECTRONIC STRUCTURE

The first-principles density-functional theory (DFT) cal-
culations presented here were performed using the Vienna
ab initio simulation package (VASP) [14], which uses the
projector augmented wave method. We used the generalized
gradient approximation (GGA) to the exchange-correlation
functional [15] or the Coulomb-corrected [16] GGA+U
functional, a plane wave energy cutoff of 500 eV, and a
k-space sampling on a 12 × 12 × 12 Monkhorst-Pack grid
for the Brillouin zone integrations for the triangular structure
and a 4 × 4 × 4 grid for the hexagonal structure. All cal-
culations are for the spin-polarized ferromagnetic structure.
All necessary structural relaxations are carried out until the
Hellman-Feynman forces became less than 0.01 eV/Å. We
also used two other all electron methods, viz., the linear
muffin-tin orbitals (LMTO) and the linear augmented plane
waves (LAPW) methods, to examine various aspects of the
problem. All methods yielded essentially the same results.
Unless otherwise stated, the DFT results presented here were
obtained by using the VASP.

A. Band structure for the triangular lattice

We first discuss the electronic structure of the triangular
lattice, which is the simpler lattice of the two and in terms of
which the electronic structure of the hexagonal lattice may
be understood. As discussed above, the hexagonal crystal
structure is derived from the triangular structure by inverting
a fraction of the Cu-Sb dumbbells. The calculated density of
states (DOS) for the triangular structure is shown in Fig. 5. The
electronic structure is consistent with the expected nominal
chemical formula Ba2+

3 Cu2+Sb5+
2 O2−

9 , with the O (2p) bands
full and a single hole in the Cu (3d) bands (Fig. 6), specifically
in the minority-spin eg band, indicated by e2

g ↓ in the middle
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FIG. 5. (Color online) Spin-polarized total and partial density of
states for the triangular structure, obtained from GGA calculations,
indicating the Cu (eg) ↓ hole. Defining the eg orbitals with respect to
the local coordinates pointed towards the neighboring oxygen atoms,
the eg and t2g states are completely separated, allowing the band
structure near EF to be described in terms of an eg Hamiltonian.
In this basis, the x2 − y2 and the z2 partial densities of states are
identical. Hybridization of Cu (eg) with the Sb (s) and O (p) states is
seen due to the Cu-O-Sb-O-Cu hopping paths indicated in Fig. 1.

panel of Fig. 5. The Cu (t2g) and eg bands are clearly separated,
with the t2g bands overlapping with the top of the oxygen
bands.

Quite remarkably, the eg bands, which are the most
important bands in the compound, are split into a lower e1

g band
and an upper e2

g band due to the electronic hopping effects,
even when there is no JT distortion as in the GGA results
(Fig. 7). This splitting is further enhanced in the GGA+U
calculation (see Fig. 8), where the structural optimization
leads to a nonzero JT distortion. Each of these subbands splits
further in the hexagonal structure due to the higher complexity
of the latter structure. The e1

g and e2
g peaks seen in the DOS

FIG. 6. (Color online) Cu (d9) configuration with a single eg ↓
hole as obtained from the DFT calculations both for the triangular
and the hexagonal lattice structures.

FIG. 7. Spin-polarized GGA band structure for the triangular
structure indicating the dominant contribution of the Cu (eg) states
near the Fermi energy (EF = 0) and the presence of the Cu (eg) ↓
hole. Here the JT distortion is zero, as obtained from the structural
optimization with the GGA functional.

obtained with the GGA cannot simply be thought of as x2 − y2

and z2 bands, as might have been the case if a strong JT
distortion was present. In fact, each of these two eg peaks is
an equal mixture of the x2 − y2 and z2 orbitals, as indicated
from the top panel of Fig. 9, where the two partial DOS lie
exactly on top of each other and are not distinguishable as two
lines. The double-peaked structure comes from the special
orientation of the CuO6 octahedra as well as the characteristic
Cu-Cu hopping path in the compound, rather than from a JT
splitting. This will be more clear when we discuss below the
tight-binding band structure.

FIG. 8. Same as Fig. 7 but obtained with the GGA+U functional.
Here a nonzero JT distortion is present, the magnitude of which
was obtained from the structural optimization with the GGA+U
functional.
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FIG. 9. (Color online) GGA band structure and Cu eg partial
density of states in the minority spin channel for the triangular
lattice (top panel). Middle panel shows the results for the simplest TB
model [TB1, Eq. (1)] with an effective Cu-Cu hopping between the eg

orbitals, while the bottom panel shows the same for a better TB model
[TB2, Eq. (6)], where the effects of oxygen and antimony orbitals
were included explicitly via Löwdin downfolding. The eg orbitals
refer to the local axes on each Cu atom as indicated in Fig. 1. There are
twice as many eg bands in the DFT results because the crystal consists
of two Cu planes per unit cell, while the TB bands are for one Cu plane.
The contributions of the two eg orbitals (x2 − y2 and z2) are the same
at every energy in the DOS in the top panel, so that the double-peaked
structure does not originate from any JT splitting, but rather from the
electronic band structure caused by the particular orientation of the
CuO6 octahedra. The blue lines in the bottom panel indicate bands
obtained from the minimal TB2 model with the single parameter V

corresponding to the Cu-O-Sb-O-Cu hopping path, which captures
the essential features of the eg bands. The symmetry points are
� = (0,0), M = (π/a)(1,1/

√
3), and K = (2π/a)(1/3,1/

√
3).

The charge density contours for the eg ↓ hole are shown in
Fig. 10, where also the electronic hopping paths connecting
the Cu-O-Sb-O-Cu atoms have been indicated. The hole has
an antibonding hybridization between the Cu (eg) and the O
(2p) orbitals, which is visible in the charge-density contours,
with a zero charge in the middle of the Cu-O bond.

Tight-binding bands. The simplest tight-binding description
(which we refer to as TB1) of the band structure near the Fermi
energy is obtained by retaining just two Cu (eg) orbitals in the
Hamiltonian and allowing an effective direct hopping integral
between these atoms. That is to say that no oxygen or any other
atom is considered in forming this Hamiltonian. However, the
eg orbitals are defined with respect to the local coordinate
system, where the coordinate axes on each Cu atom point
towards the adjacent oxygen atoms in the CuO6 octahedra
as indicated in Fig. 1. For the triangular structure, there is a
single Cu atom in the unit cell and with the standard Vσ and Vπ

hopping integrals between the d orbitals, the matrix elements
of the 2 × 2 tight-binding Hamiltonian, written in the basis

O

Cu

Sb(1)

Sb(2)

Ba

FIG. 10. (Color online) Charge density contours for the Cu (eg) ↓
hole on a plane containing the hopping paths between the Cu atoms
in the triangular structure as obtained from the GGA calculations and
plotted on a logarithmic scale. As seen from the partial DOS for Cu
(3d) and O (2p) in Fig. 5, the eg hole (indicated by e2

g ↓ in Fig. 5) has
substantial hybridization with the oxygen 2p states, which is clearly
seen from the charge contours here. Note that the charge density is
zero between Cu and O, indicating the expected antibonding Cu-O
hybridization for the e2

g state. Sb(1) belongs to the Cu-O-Sb-O-Cu
hopping path, while Sb(2) makes up the CuO3Sb dumbbell, which is
visible in the figure.

set: |1〉 = |x2 − y2〉, |2〉 = |z2〉, are given by

h11 = 2Vπ cos 2ηx + (3Vσ/4 + Vπ ) cos ηx cos ηy,

h12 = −
√

3(Vσ/4 − Vπ ) sin ηx sin ηy, h21 = h∗
12, (1)

h22 = Vσ/2 cos 2ηx + (Vσ/4 + 3Vπ ) cos ηx cos ηy.

This we call the TB1 Hamiltonian. Here ηx ≡ kxa/2, ηy ≡√
3kya/2, and a is the distance between two nearest-neighbor

Cu atoms on the triangular lattice. The band structure and the
DOS obtained from the TB1 Hamiltonian are shown in the
middle panel of Fig. 9. A fit to the triangular GGA band struc-
ture yields the parameters Vσ = 0.5 eV and Vπ = −0.04 eV.
While this treatment describes the gross features of the band
structure including the double peak structure in the DOS,
the band dispersion over the Brillouin zone is not very well
described. The reason is that the TB hopping occurs via the
oxygen atoms, so that the hopping between the Cu (eg) is the
strongest, when the two eg orbitals are oriented along the re-
spective Cu-O bonds on the two Cu atoms, rather than along the
nearest-neighbor Cu-Cu direction, which is the case for TB1.

Löwdin downfolding and the minimal tight-binding Hamil-
tonian (TB2). To remedy this, a better tight-binding treatment
(we call this TB2) is necessary, which explicitly involves the
relevant O and Sb orbitals along the hopping path. We obtain
a tight-binding Hamiltonian matrix involving all these orbitals
and construct an effective 2 × 2 Hamiltonian in the Cu (eg)
subspace by folding in the effects of the other orbitals via
Löwdin downfolding [17]. This is in essence a perturbative
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method, which works if the energies of the orbitals to be
downfolded are far removed from the main orbitals of interest.
The Löwdin downfolding procedure for solving the eigenvalue
problem (H − λI )|ψ〉 = 0 is to partition the Hamiltonian into
blocks:

H =
(

h b

b† c

)
, (2)

where we are not interested in the higher-energy states in the
block c, but include their effects on the block h by perturbation
theory. Now, the exact result for the effective Hamiltonian for
states in the h subspace is given by

h′ = h + b(λI − c)−1b†, (3)

which however involves the eigenvalue λ of the full Hamil-
tonian. It can be shown that an iterative solution of Eq. (3)
produces the Brillouin-Wigner perturbation series, which to
the lowest order yields the result

h′
ij = hij +

∑
k

bikbkj

λ − ckk

, (4)

where i and j belong to the subspace h and k belongs to the
subspace c, which is being downfolded.

In most cases λ can be replaced by the diagonal elements
hii and Eq. (4) is valid if |bik| 	 |hii − ckk|. In the present
case, h refers to the Cu (eg) subspace and with the on-site
energy taken as εd = 0 and no direct hopping present between
the Cu atoms, h = 0, so that Eq. (3) leads to the final result
h′ = −bc−1b†. For a single Cu plane, the planar unit cell has
the formula CuO6SbBa, if we retain the possibility of hopping
via the Sb atom as well as via the Ba atom (see Fig. 1), the
second being the less important path because of the somewhat
larger Ba-O distances. Retaining Cu (eg), Sb (s), Ba (s), and
one O (pz) (pz along the Cu-O bond) orbital, we have a full
10 × 10 Hamiltonian, which is constructed with Harrison’s
tight-binding matrix elements [18]. After Löwdin downfolding
we get the following effective 2 × 2 Hamiltonian in the Cu (eg)
subspace:

heff =
(

h′
11 h′

12

h′
21 h′

22

)
, (5)

where the matrix elements are

h′
11 = −(3V/2) cos 2ηx, h′

21 = h′∗
12,

h′
12 =

√
3 sin ηx[V sin ηy + iV ′(cos ηy − cos ηx)], (6)

h′
22 = (V/2)(cos 2ηx − 4 cos ηx cos ηy).

This we call the TB2 Hamiltonian. We propose that this effec-
tive 2 × 2 Hamiltonian together with a Hubbard-U Coulomb
interaction term and an appropriate E ⊗ e Jahn-Teller coupling
term [11,12] [see Eq. (12)] is a minimal model for the
description of the electronic structure for the triangular lattice.
A somewhat simpler model results if we omit the hopping
via the Cu-O-Sb-O-Cu hopping path, in which case we have
a single tight-binding parameter V = V ′, an expression for
which is given in Eq. (7).

Note that this Hamiltonian cannot simply be obtained by
just retaining the Cu (eg) orbitals on the triangular lattice
and by using the standard tight-binding treatment, which

in fact yielded the TB1 matrix discussed earlier, but it
must be obtained by the downfolding procedure. We still
have just two independent parameters V and V ′, which
can be expressed in terms of the on-site energies and the
hopping integrals between the nearest neighbor atoms, viz.,
εp(O), εs(Sb), ε′

s(Ba), Vpdσ (O-Cu), Vspσ (Sb/Ba-O). In terms
of these parameters, we have V = (α1 + α2 − β)/� and V ′ =
(α2 − α1)/�, where α1 = εpεsV

2
pdσ , α2 = εpε′

sV
2
pdσ , β =

6V 2
pdσ V 2

spσ , and � = 9εpV 2
spσ − 3ε2

p(εs + ε′
s) + ε3

pεsε
′
sV

−2
spσ .

We have fitted the triangular GGA bands to obtain the two
Hamiltonian parameters: V = −0.15 eV and V ′ = −0.10 eV.
As seen by diagonalizing Eq. (6), the bandwidth in the model is
4|V | at the M point and 9|V ′|/2 at the K point in the Brillouin
zone.

The tight-binding band structure obtained from the diag-
onalization of the Hamiltonian (6) is shown as red lines in
the bottom panel of Fig. 9, which fits with the DFT bands
remarkably well, including the band gap at the K point in
the Brillouin zone. Note that the DFT results (top panel) have
double the number of Cu (eg) bands because the unit cell has
two copper planes, while the TB model is for just one plane
and, furthermore, that the band shown in the top panel as a
black line is an Sb (s) band, which is not taken into account in
the TB models. In the DFT results, these two bands split by a
small amount due to the weak interaction between the two Cu
planes, an effect not included in the TB models.

A simpler tight-binding model results if we omit the elec-
tron hopping path via the Ba atom, retaining only the dominant
Cu-O-Sb-O-Cu hopping path. This can be accomplished by
simply taking the Ba on-site energy to be infinity, ε′

s → ∞, in
the TB parameters of Eq. (6), which yields

V = V ′ = V 2
pdσ

εp

1

εsεp/V 2
spσ − 3

, (7)

so that we have just a single TB parameter.
This minimal one-parameter TB2 model indeed captures

the essential features of the density-functional eg bands rather
well. In this case, the diagonalization of Eq. (6) yields the
eigenvalues

ε±
k =

{−3V/2,

−2V (cos2 ηx + cos ηx cos ηy − 5/4),
(8)

which are shown as blue lines in the bottom panel of Fig. 9.
The above equation shows, quite remarkably, that one of the
two bands, in fact the one that makes up the Cu (eg) hole, is
flat over the entire Brillouin zone, if we neglect the weaker
hopping path via the Ba atom. This explains the nearly flat
band for the Cu (eg) hole seen in the density-functional bands.
This represents the simplest minimal model for the description
of the eg band structure.

B. Band structure for the hexagonal lattice

The hexagonal structure is less symmetric with six Cu
atoms in the unit cell, two on each of the two hexagonal
planes and two Cu′ atoms out of the plane, which makes a
tight-binding description quite complex, but can nevertheless
be achieved. The DOS for the hexagonal lattice obtained
from the density-functional calculations is shown in Fig. 11
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FIG. 11. Spin-polarized electronic densities of states for the
hexagonal and the triangular structures obtained from the GGA
calculations, indicating the presence of one minority-spin eg hole
(e2

g ↓) in both cases.

and compared with the tight-binding results in Fig. 12. The
overall electronic structure is essentially the same as for the
triangular structure and we still have the e2

g ↓ hole, except
that the presence of the out-of-plane Cu′ atoms leads to a
more complicated DOS, with several peaks in the e1

g and e2
g

bands. The essential features of the DOS are captured by the
tight-binding Hamiltonian TB1 described earlier, for which
the calculated DOS is shown in the bottom panel of Fig. 11.

FIG. 12. (Color online) Density of states for the eg bands in the
minority spin channel for the hexagonal structure as obtained from
GGA and from the tight-binding TB1 model. The partial DOS in
the middle panel is per Cu atom and the figure shows that both the
in-plane Cu and out-of-plane Cu′ atoms contribute to the eg hole
(there are six eg holes now, one per copper atom).

FIG. 13. Spin-polarized GGA+U bands for the hexagonal struc-
ture. An insulating solution is obtained and there is one e2

g ↓ hole
present per Cu atom.

The better tight-binding Hamiltonian, the TB2, may be easily
constructed by keeping the (CuO3)2 (Cu′O3) Sb2 atoms in the
minimal model and downfolding it into a 6 × 6 effective Cu
(eg) Hamiltonian following the Löwdin procedure described
for the triangular structure. The algebra is straightforward but
tedious and it would yield an effective minimal Hamiltonian
in the Cu (eg) subspace for the hexagonal structure.

Figure 13 shows the GGA+U band structure for the
hexagonal structure. Since the GGA+U optimization is found
to leave Cu, Sb, and Ba positions unchanged in our calculations
with triangular structure, we took the relaxed oxygen positions
of CuO6 octahedra from that calculation and applied it to the
hexagonal structure with the elongation axis pointing towards
the Cu′ position. This structure without further optimization
was used for the band structure calculation in Fig. 13.

IV. JAHN-TELLER EFFECT

Even though a strong JT effect might be expected for
the Cu (d9) ion with one hole, no static JT distortion has
been observed in the experiment. This has led to the idea
that either the JT effect is dynamical [9] or that it is static,
but the individual octahedra are randomly oriented with a
rather disordered lattice [13,19,20], so that they do not show
up in the experimental measurements. Our results suggests
a random static JT distortion. We find that while the band
structure term suppresses the static JT distortion within the
DFT, a finite JT distortion results when the electron correlation
effects are taken into account within the DFT+U method.
Exact diagonalization studies of a simple model illustrates the
correlation-driven Jahn-Teller distortion, which we discuss in
Sec. IV B.

A. Large kinetic energy suppresses the JT distortion

1. Two-site model

It is easy to illustrate the adverse effect of the kinetic
energy (band structure) term on the JT distortion from a simple
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two-site model. One intuitively thinks of the JT effect keeping
in mind an isolated system such as the CuO6 octahedron.
However, as is well known, the electron kinetic energy is
also an important consideration for a solid with a lattice of
JT centers.

Consider a two-site model with a doubly degenerate orbital
at each site occupied by one electron or a hole as relevant
for a lattice of Cu (d9) ions. Since both sites are occupied
by one electron each, the kinetic energy gain comes from
hopping between the lower level of one atom with energy
−gQ to the higher level E = gQ of the second, where the
doubly degenerate states at each site are now split due to
the JT interaction. This is described by the Hamiltonian H =
(−gQ t

t gQ), where t is the intersite hopping integral, g is the
linear JT coupling constant, and Q is the magnitude of the JT
distortion. By diagonalizing the matrix and adding the elastic
energy term, the total energy can then be written as

E = (−gQ) + (gQ −
√

t2 + g2Q2) + 2−1KQ2, (9)

where the three terms in this expression are, respectively, the
on-site JT energy gain of the electron, the band structure energy
gain Ebs due to hopping, and the elastic energy cost. Note that
while the first term favors a JT distortion with the gain of
energy −gQ, the band structure term cancels it in the lowest
order of the distortion Q. The band structure energy gain for
the electron Ebs is the largest when the orbital it is hopping
to has the same energy. It readily follows from the above
energy expression that the JT distortion occurs only when the
JT coupling parameter g is sufficiently strong, so that

λJT ≡ g2/(WK) > λc, (10)

where the critical value turns out to be λc = 1/2 for the two-site
model considered here. In the equation above, the bandwidth
parameter W = 2t and note that for the isolated site (W = 0),
the JT distortion occurs no matter how small the magnitude of
g is. In other words, all else remaining the same, the bandwidth
W must remain below a critical value for the JT distortion to
be present in the solid. It is the strength of the dimensionless
parameter λJT that controls the magnitude of the JT distortion
in the solid. The value of the critical strength λc depends on
the details of the band structure but it is generally of the order
of one, as we found for the two-site model in Eq. (10).

2. Tight-binding model for the triangular structure with JT
coupling

In order to study the competition between the various terms
in the total energy, we have extended the same analysis as
above to the solid using the triangular structure. The essential
results are true irrespective of the lattice used. The total energy
is described by the Hamiltonian

H = Hke + HJT + 1
2KQ2, (11)

where for Hke we use the tight-binding Hamiltonian Eq. (6),
while the second term is the on-site E ⊗ e JT interaction term

HJT = −g(Q2τx + Q3τz), (12)

where g is the linear JT coupling strength, Q2,Q3 are the
two active octahedral distortion modes, �τ is the pseudospin
describing the eg orbitals, |↑〉 = |x2 − y2〉, and |↓〉 = |z2〉.

FIG. 14. (Color online) DFT-GGA calculation of the JT coupling
strength g, which is obtained from the slope of the energy splitting
between e1

g and e2
g at the � point in the triangular structure, viz.,

�E = 2gQ, where Q = (Q2
2 + Q2

3)1/2. The energy splitting is shown
as a function of the amplitude of both the JT modes Q2 and Q3.

Finally, the last term in the Hamiltonian (11) is the elastic
energy cost of the distortion with Q2 = Q2

2 + Q2
3.

DFT calculation of the JT coupling parameters. The JT
coupling constant g was evaluated from DFT by distorting
the CuO6 octahedra in the triangular structure by a fixed
amount and then relaxing the remaining atoms using the GGA
functional, and finally by calculating the splitting of the two
Cu (eg) bands at the � point in the Brillouin zone. Using
Eqs. (8) and (12), the energies of the eg states at the � point are
found to be ε±(�) = −3V/2 ± gQ with Q = (Q2

2 + Q2
3)1/2,

so that the splitting at the � point is directly proportional to
the distortion �E = 2gQ. The results are shown in Fig. 14,
which follows this linear behavior rather well and yields
the value g = 1.0 eV/Å. Note that the magnitude of g is
significantly strong and typical for the JT systems, although it
is a bit smaller than the magnitude in the familiar JT compound
LaMnO3 [12]. In addition, as already mentioned, the peculiar
electronic hopping in the compound already splits up the eg

states, with equal contribution from the two orbitals, which
means that there is not that much energy gain as a result of
the JT distortion. Finally, the elastic energy constant K was
obtained by distorting the CuO6 octahedra in the unit cell by a
fixed amount and then by relaxing the remaining atoms using
GGA, which yielded the value K ≈ 15 eV/Å2.

Tight-binding energy. With the above Hamiltonian param-
eters, we now examine the contributions of the different parts
of the Hamiltonian (11) to the total energy. Figure 15 illustrates
the various parts, viz., Eelastic = 1/2KQ2, EJT = −gQ, and
the band structure energy Ebs . Note that in this figure the
parameters are such that the band structure term is relatively
small, so that there is a JT distortion Q present corresponding
to the minimum of the total energy Etot indicated by a black
dot. Notice also that the band structure energy increases as a
function of the JT distortion, so that it does not favor a JT
distortion, which is similar to the effect of the elastic energy
term. The JT coupling energy −gQ must overcome both the
band structure and the elastic energy for the JT distortion to
be possible and this is indeed the case in Fig. 15.

However, unlike the case of the isolated octahedron, a JT
distortion may not occur at all if g is small. In Fig. 16 we
show the total energy for several values of λJT ≡ g2/(WK).
We find that a critical value of λJT > λc ≈ 0.50 is needed
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FIG. 15. Illustration of the various components of the energy as
a function of the JT distortion obtained for the triangular structure
with the Hamiltonian (11). Here the strength of the JT coupling g is
large enough to overcome the band structure energy resulting in a JT
distortion corresponding to the minimum total energy indicated by
the black dot. The parameters here are such that g2/(WK) = 1.

for the existence of a JT distortion of the system, while λJT

is only about ≈0.22 in the compound under study, where
we used the bandwidth W = 4|V | ≈ 0.6 eV obtained from
the DFT bands. The small value of λJT for the present
compound means that the band structure term overwhelms
the JT interaction, characterized by the energy g2/K , so that
there is no JT distortion in the compound. This conclusion
is directly supported by the density-functional total energy
shown in the same figure as a function of the JT distortion
Q, where the lattice is relaxed in each case while keeping
the distortion fixed. The DFT curve almost exactly overlaps
with the tight-binding curve with λJT = 0.22 (not shown in
the figure), indicating that the tight-binding model we have
employed for the study of the JT effect is quite reasonable.

FIG. 16. Variation of the total energy with the distortion Q for
several values of the JT coupling strength λJT = g2/(WK) obtained
from Eq. (11) with Hke described by the TB2 Hamiltonian Eq. (6).
The dashed line indicates the DFT-GGA total energy per Ba3CuSb2O9

formula unit for the triangular structure obtained by optimizing the
crystal structure for each Q; no Jahn-Teller distortion is predicted
from the GGA.

B. Correlation driven Jahn-Teller effect in the solid

In the above analysis, correlation effects were not included.
Electron correlation effects will, quite generally, enhance the
tendency for a JT distortion in the solid, simply because
it reduces the kinetic energy of the electrons as they must
move in a correlated fashion. The reduction of the kinetic
energy due to correlation is quite well known. For example,
in the Gutzwiller treatment of correlated systems, the kinetic
energy reduction factor may be explicitly evaluated for certain
models such as the Hubbard model [21–24]. The kinetic energy
becomes smaller and smaller as the strength of the Coulomb
interaction is increased and it eventually becomes zero beyond
the Brinkman-Rice metal-insulator transition [25]. As is clear
from the discussion of the previous subsection, since the
kinetic energy suppresses the tendency towards a JT distortion,
a reduction of it through correlation will favor a JT distortion.

Exact diagonalization of a model many-body system. To
illustrate the above point that correlation diminishes the
kinetic energy and hence increases the tendency towards a
JT distortion, we consider a simple, exactly solvable model
Hamiltonian, viz., a spinless Hamiltonian for a single hexagon
of Cu atoms with two orbitals per site with both a Jahn-Teller
as well as a Coulomb interaction term present. We have
a half-filled system with one electron per site. An exact
diagonalization of the many-body Hamiltonian using the
Lanczos method yields the ground state energy and allows us
to study the Jahn-Teller distortion of the system in the presence
of the Coulomb interaction.

The model Hamiltonian reads

H = t
∑
〈ij〉,α

(c†iαcjα + H.c.) + t ′
∑
〈ij〉

(c†i1cj2 + c
†
i2cj1) + H.c.

+
∑

i

[
U ni1ni2 − gQ (ni1 − ni2) + 1

2
KQ2

]
, (13)

where c
†
iα creates an electron at the ith site in the j th orbital

(i = 1,2, . . . ,6 and j = 1,2), t and t ′ are the nearest-neighbor
hopping integrals, U is the on-site Coulomb interaction, g rep-
resents the Jahn-Teller coupling term, Q is the Jahn-Teller dis-
tortion of the local site (assumed to be the same on all six sites
for simplicity), K is the elastic energy cost of the distortion,
and finally 〈ij 〉 denotes the summation over distinct pairs of
nearest-neighbor bonds. We take the parameters t = −0.1 eV,
t ′ = 0.05 eV (which yield a bandwidth of W = 0.6 eV
in the absence of all other terms), U = 2 eV, g = 1 eV/Å,
and K = 5 eV/Å2. The Hamiltonian was solved exactly
by Lanczos diagonalization and also in the Hartree-Fock
approximation.

The results are shown in Fig. 17, which beautifully
illustrates the essential physics of, what we may call, the
correlation-driven JT effect. For the isolated site (t = t ′ = 0),
any value of the JT interaction g will produce a distortion
Q = g/K , which minimizes the total energy expression E =
−gQ + 1/2KQ2. However, in the solid, the bandwidth W

must remain below a critical value [see Eq. (10) for the two-site
model] for the JT distortion to continue when the solid forms.
As Fig. 17 indicates, the bandwidth is sufficiently large so as
to suppress any JT distortion for the case U = 0 eV. When
the Coulomb interaction is added (U = 2 eV), the electrons
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FIG. 17. (Color online) Illustration of the correlation driven
Jahn-Teller effect. The figure shows the exact diagonalization results
for the Hamiltonian Eq. (13) showing the ground-state energy E as
a function of the JT distortion Q. The energy minimum occurs at
a nonzero Q if Coulomb interaction is present, while there is no
JT distortion (Q = 0) for the noninteracting system. Obviously, if
U = 0, both exact results and the Hartree-Fock results coincide (blue
line), since we have a noninteracting system. The energy zeros have
been shifted here; the actual exact energies (zero unshifted) are always
below the Hartree-Fock energies, since the Hartree-Fock energies are
variational estimates of the exact energies.

move in a correlated fashion, in effect, reducing the kinetic
energy or the bandwidth, so that the parameter λJT ≡ g2/WK

exceeds the critical value λc, producing a nonzero JT distortion
as a result. In the model study, the exact results are mimicked
by the Hartree-Fock treatment, but as seen from the figure,
the latter yields a somewhat larger JT energy, defined as the
energy gained due to the JT distortion.

C. GGA+U density-functional results for Ba3CuSb2O9

Within the density-functional method, the correlation effect
may be included in an approximate way with the Coulomb-
corrected GGA+U functional. The total energy calculations,
especially the lattice relaxation from the DFT forces, become
quite tedious for a complex crystal structure, so we performed
the structural relaxation for the triangular lattice using the
GGA+U method. The environment of the in-plane Cu atoms
are expected to be more or less the same in both the triangular
and the hexagonal structures; so no major differences are
expected for the JT distortion of the CuO6 octahedra between
the two structures.

The results for the Cu-O bond lengths obtained from
this structural optimization are shown in Fig. 18. Without
the Coulomb term (U = 0 eV), there is a strong trigonal
distortion with three bond lengths (along Cu-O-Ba; see
Fig. 1) significantly longer than the three along Cu-O-Sb1.
When the Coulomb interaction is included (typical values of
U ≈ 4–8 eV), we find a JT-type distorted octahedron, though
the Cu-O bond lengths are stretched by different amounts
along +ẑ and −ẑ directions. The remaining bond lengths are
nearly the same. For the triangular structure, the three direction
along Cu-O-Sb for this octahedral stretching are identical, thus
producing three equivalent JT minima, while for the hexagonal

FIG. 18. (Color online) Cu-O bond lengths in the CuO6 octa-
hedra obtained from the full structural relaxation of the triangular
structure with (a) GGA and (b) GGA+U (U = 4 eV). The latter
shows a JT distortion of the Q3 type, which is the octahedral stretching
mode. In (a), the longer bonds are along Cu-O-Ba, while the shorter
bonds are along Cu-O-Sb. Similarly, in (b), the 2.23 Å bond is along
Cu-O-Ba, while the 2.12 Å bond is along Cu-O-Sb.

structure, these three directions are not all the same. For the
latter case, there is a unique direction defined by joining Cu
to Cu′ along Cu-O-Sb1-O-Cu′, which forms a straight line,
identifiable in Fig. 3. The other two directions along Cu-O-Sb1
terminate on Sb1. Thus in the hexagonal structure, the three
JT minima are not equivalent and one of them will have a
different energy than the other two.

In Fig. 19 we show the total energy with a fixed lattice
distortion Q to examine in more detail the energy reduction as
a function of the JT distortion. In these calculations we added
a fixed Q3 distortion to the CuO6 octahedra by displacing
the oxygen atoms, fixed the positions of these atoms, and
relaxed the remaining structure from the DFT forces. We have
taken the value U = 4 eV in the GGA+U calculation, which
is reasonable for Cu. The results show that the Coulomb
interaction term clearly favors a JT distortion as anticipated
from the exact diagonalization results for the model system in
the previous section (see Fig. 17). Again, the basic physics is
that the Coulomb interaction term makes the electrons move

FIG. 19. (Color online) GGA+U total energy E per unit cell
(containing two Cu atoms) as a function of the lattice distortion
Q, which was held fixed while relaxing the remaining atoms (right)
and the corresponding gap �E between the occupied e1

g and the
unoccupied e2

g state at the � point in the Brillouin zone (left).
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FIG. 20. (Color online) GGA+U results for the densities of
states for the minority-spin eg orbitals. The bottom right panel
corresponds to the minimum-energy structure as obtained from the
GGA+U total energy, Fig. 19.

in a correlated manner, effectively reducing the kinetic energy
due to correlation, with a reduced kinetic energy (or enhanced
g2/WK) favoring the tendency towards the JT distortion. We
find from the figure that there is a JT distortion of about
Q = 0.1 Å, when the Coulomb interaction is included within
the GGA+U method.

Figure 20 shows the densities of states for different values
of U and the octahedral distortion Q. The results indicate an
insulating band gap between the two eg states, which is also
seen from the corresponding band structure, shown in Fig. 8.
This insulating behavior is in agreement with experiments.

D. Static vs dynamical JT effect

It is a subject of current debate regarding whether the JT
effect in Ba3CuSb2O9 is static or dynamical or if there is even
any JT effect at all. The original experiments of Köhl [7]
measured no noticeable JT distortion of the CuO6 octahedra.
This could however mean that (a) the JT distortions are
static but with distortion axes of different octahedra randomly
oriented in the crystal (random static JT), so that one measures
zero average distortion, or (b) the JT distortions are dynamical,
in which case the nuclear framework tunnels between several
equivalent minima. We argue below for the random static JT
distortion for the hexagonal structure.

First consider the triangular lattice. For this lattice, the three
axial (x,y,z) directions along the Cu-O bonds are equivalent,
which leads to three equivalent minima of identical energy in
the JT problem. For the E ⊗ e JT coupling, involving the eg

states and the Q2,Q3 modes, the adiabatic potential surface is
given by the expression [11]

E± = 1
2KQ2 ± Q

√
g2 + G2Q2 + 2gGQ cos(3φ), (14)

where Q =
√

Q2
2 + Q2

3 and φ = tan−1(Q2/Q3) are the polar
coordinates and E± denote the two potential sheets. Looking
at the lower adiabatic potential surface (APS), there are
three equivalent minima at φ = 0, 2π/3, and 4π/3, separated
by a tunneling barrier between adjacent minima of height
β = 2GQ2

0, where Q0 is the location of the minima. From the
GGA+U results of Fig. 19, we can estimate the magnitudes of
the parameters from the slopes and curvatures of �E and the
total energy, which yield the values g ≈ 1.3 eV/Å and K ≈
15 eV/Å2. If we take the minimum of Q from the fully op-
timized structure [Fig. 18(b)], we find Q0 = (Q2

2 + Q2
3)1/2 ≈

Q3 ≈ 0.17 Å, Q2 being nearly zero. The parameter G may be
indirectly obtained from the expression Q0 = g(K − 2G)−1,
which yields the value of the warping parameter G ≈
3.5 eV/Å2, which is rather large (compare this to ∼2 eV/Å2

for the manganites [12], where the JT distortion is known to be
static, and ∼0.4 eV/Å2 for graphene, where the JT distortion
is predicted to be dynamical [26]).

The nuclear tunneling amplitude between the two minima
of the APS may be estimated [26] from the expression
T ≈ −�V × F , where �V = (π2/2 − 2)Q2

0G is the devi-
ation of the barrier energy from the ideal simple-harmonic
potential of the APS minima and the Frank-Condon factor
F = ∫

φ∗
1 (R)φ2(R)d3R is the overlap between the zero-point

nuclear wave functions localized at the neighboring APS
minima. This yields the rough tunneling amplitude of T ≈
−13 meV. A more accurate estimate may be obtained from
solving the quantum-mechanical Schrödinger equation for
the combined nuclear-electronic motion [26]. This yields
the tunneling amplitude of T ≈ −7 meV. Due to the Berry
phase introduced by the motion of the electron that follows
the nuclear motion adiabatically, the ground state is doubly
degenerate separated from the singly degenerate first excited
state by an energy 3|T | (21 meV in the present case) in the
combined nuclear-electronic problem. This so called tunneling
splitting energy is large enough (large as compared to the
typical strain splitting of the three JT APS minima, which is
typically 5–10 meV) that this would suggest a dynamical JT
effect for the triangular lattice.

Turning now to the hexagonal lattice structure, the three
JT minima in the APS are no longer equivalent, since the
three cubic directions are different owing to the presence of
the Cu′ atoms, which results in the unique ẑ axis pointed
along the Cu-O-Sb-O-Cu′ as seen from the structure figure
(Fig. 3). We computed the energies of the three minima for
the hexagonal structure from DFT, which shows that one of
the three minima (the one that corresponds to Q3 distortion
along the unique ẑ axis) has the lower energy than the other
two by a large amount of about 43 meV (see Fig. 21).
Since the tunneling splitting (estimated to be 21 meV for the
triangular structure and will be even smaller for the hexagonal
structure, since the three minima have unequal energies now)
is significantly less than the 43 meV, the system will have a
static JT distortion corresponding to this minimum. Now, the
Cu′ atoms come from the inversion of the Cu-Sb dumbbells;
so if these flipped dumbbells are disordered as suggested from
the experiments, then the most favorable JT minimum with Q3

along ẑ also changes from one CuO6 octahedron to another,
leading to the random static JT distortions, a scenario that is
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FIG. 21. (Color online) Illustration of the energy contours of
the lower APS for the E ⊗ e Jahn-Teller effect. For the triangular
structure, the three minima are all equivalent and have the same
energy [Eq. (14)]. However, for the hexagonal structure, one of the
three minima, shown as solid contours here, which occurs along the
Q3 direction with the z axis defined in Fig. 3, has a lower energy (by
about 43 meV according to the GGA+U calculations) as compared
to the other two minima.

favored by some experiments [19]. In essence, the significantly
smaller tunneling splitting is unable to overcome the large
energy difference between the three minima in the hexagonal
structure, thus suggesting the presence of the random JT
distortions.

On the other hand, if the three JT minima are close in
energy, as our calculations suggest for the triangular structure,
then Nasu and Ishihara [9] have recently proposed that the
dynamical JT effect would lead to the correlation between spin
and orbital motion. Recent experiments [27] on the hexagonal
material have found evidence for such spin-orbital correlation,
but our work suggests that the dynamical JT effect is unlikely
to be the reason behind it.

V. SUMMARY

In summary, we studied the electronic structure of the
spin liquid candidate Ba3CuSb2O9 from density-functional
methods both in the triangular and the hexagonal lattice
structures. Electron states near the Fermi energy are well
described in terms of the Cu (d9) with a single eg hole in
both the structures. A Löwdin procedure was used to obtain

a minimal tight-binding Hamiltonian model for the Cu (eg)
bands by downfolding the oxygen p orbitals and an expression
for this Hamiltonian was given explicitly for the triangular
lattice [Eq. (5)]. A similar minimal Hamiltonian may be
obtained for the hexagonal structure as well.

We studied the presence of the JT effect in the compound
from structural energy minimization within the Coulomb-
corrected GGA+U method and found that the correlation
effects are important for the JT distortions of the CuO6 oc-
tahedra. First, we illustrated the idea of the correlation-driven
JT effect by the exact diagonalization of a simple tight-binding
model Hamiltonian on a hexagon (Sec. IV B). These results are
quite generally applicable and not just limited to the present
system under study. The basic point is that correlation effects
enhance the tendency towards the JT distortion by reducing the
bandwidth W , e.g., via the Gutzwiller bandwidth reduction
factor, which then enhances the strength of the effective JT
parameter λJT = g2/WK responsible for the JT distortions in
the solid. For the present compound, we found no JT distortions
within the density-functional calculations, while inclusion of
the Coulomb correlation effects within the GGA+U method
yielded significant JT distortions.

Regarding the nature of the JT distortions, we examined
whether they are random static distortions or dynamical JT
distortions. For the triangular structure, the three minima
of the APS are equivalent from symmetry. Based on the
JT parameters estimated from the GGA+U functional, we
obtained a significant magnitude for the nuclear tunneling
splitting (3|T | ≈ 21 meV) due to the quantum mechanical
nuclear motion between these three minima, which signaled a
dynamical JT effect because this splitting is much higher than
the typical strain splitting of 5–10 meV in the solid. However,
for the hexagonal structure, the environment of the octahedra
has broken spatial symmetry, so that the three energy minima
of the APS are no longer equivalent. GGA+U results showed
that one of the three minima (Fig. 21) is lower than the other
two by as much as 43 meV. Because this is significantly larger
than the tunneling splitting, our results suggest a static JT effect
for the hexagonal structure. The JT distortions are furthermore
expected to be random because of the presence of disordered
Cu-Sb flipped dumbbells and other disorder in the system.
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[26] Z. S. Popović, B. R. K. Nanda, and S. Satpathy, Phys. Rev. B
86, 085458 (2012).

[27] Y. Ishiguro, K. Kimura, S. Nakatsuji, S. Tsutsui, A. Baron,
T. Kimura, and Y. Wakabayashi, Nat. Commun. 4, 2022
(2013).

085130-13

http://dx.doi.org/10.1126/science.1212154
http://dx.doi.org/10.1126/science.1212154
http://dx.doi.org/10.1126/science.1212154
http://dx.doi.org/10.1126/science.1212154
http://dx.doi.org/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.16533
http://dx.doi.org/10.1103/PhysRevB.54.16533
http://dx.doi.org/10.1103/PhysRevB.54.16533
http://dx.doi.org/10.1103/PhysRevB.54.16533
http://dx.doi.org/10.1103/PhysRevB.44.943
http://dx.doi.org/10.1103/PhysRevB.44.943
http://dx.doi.org/10.1103/PhysRevB.44.943
http://dx.doi.org/10.1103/PhysRevB.44.943
http://dx.doi.org/10.1063/1.1748067
http://dx.doi.org/10.1063/1.1748067
http://dx.doi.org/10.1063/1.1748067
http://dx.doi.org/10.1063/1.1748067
http://dx.doi.org/10.1103/PhysRevLett.109.117203
http://dx.doi.org/10.1103/PhysRevLett.109.117203
http://dx.doi.org/10.1103/PhysRevLett.109.117203
http://dx.doi.org/10.1103/PhysRevLett.109.117203
http://dx.doi.org/10.1126/science.1221364
http://dx.doi.org/10.1126/science.1221364
http://dx.doi.org/10.1126/science.1221364
http://dx.doi.org/10.1126/science.1221364
http://dx.doi.org/10.1103/PhysRevLett.10.159
http://dx.doi.org/10.1103/PhysRevLett.10.159
http://dx.doi.org/10.1103/PhysRevLett.10.159
http://dx.doi.org/10.1103/PhysRevLett.10.159
http://dx.doi.org/10.1103/PhysRev.137.A1726
http://dx.doi.org/10.1103/PhysRev.137.A1726
http://dx.doi.org/10.1103/PhysRev.137.A1726
http://dx.doi.org/10.1103/PhysRev.137.A1726
http://dx.doi.org/10.1103/PhysRevB.88.035114
http://dx.doi.org/10.1103/PhysRevB.88.035114
http://dx.doi.org/10.1103/PhysRevB.88.035114
http://dx.doi.org/10.1103/PhysRevB.88.035114
http://dx.doi.org/10.1103/RevModPhys.56.99
http://dx.doi.org/10.1103/RevModPhys.56.99
http://dx.doi.org/10.1103/RevModPhys.56.99
http://dx.doi.org/10.1103/RevModPhys.56.99
http://dx.doi.org/10.1103/PhysRevB.2.4302
http://dx.doi.org/10.1103/PhysRevB.2.4302
http://dx.doi.org/10.1103/PhysRevB.2.4302
http://dx.doi.org/10.1103/PhysRevB.2.4302
http://dx.doi.org/10.1103/PhysRevB.86.085458
http://dx.doi.org/10.1103/PhysRevB.86.085458
http://dx.doi.org/10.1103/PhysRevB.86.085458
http://dx.doi.org/10.1103/PhysRevB.86.085458
http://dx.doi.org/10.1038/ncomms3022
http://dx.doi.org/10.1038/ncomms3022
http://dx.doi.org/10.1038/ncomms3022
http://dx.doi.org/10.1038/ncomms3022



