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The metallic helimagnet MnSi has been found to exhibit skyrmionic spin textures when subjected to magnetic
fields at low temperatures. The Dzyaloshinskii-Moriya (DM) interaction plays a key role in stabilizing the
skyrmion state. With the help of first-principles calculations, crystal field theory and a tight-binding model we
study the electronic structure and the origin of the DM interaction in the B20 phase of MnSi. The strength of ~D
parameter is determined by the magnitude of the spin-orbit interaction and the degree of orbital mixing, induced
by the symmetry-breaking distortions in the B20 phase. Our calculations suggest strong coupling between Mn-d
and Si-p states, which is consistent with a mixed valence ground state |d7−xp2+x〉 configuration. Consistent
with previous calculations, we find that DFT+U leads to the experimental magnetic moment of 0.4 µB , which
redistributes electrons between the majority and minority spin channels. We derive the magnetic interaction
parameters J and ~D for Mn-Si-Mn superexchange paths using Moriya’s theory assuming the interaction to
be mediated by eg electrons near the Fermi level. Using parameters from our calculations, we get reasonable
agreement with the observations.

PACS numbers: 12.39.Dc,31.15.A-,75.10.Dg,31.15.aq

I. INTRODUCTION

Recent observations of skyrmions [1] in magnetic solids
have raised considerable interest in this new magnetic state.
The skyrmion state is a novel, vortex-like spin structure that
carries a characteristic topological charge S, which is S = ±1
for skyrmionic state and S = 0 for ferromagnetic and spin
spiral states [2]. Materials with skyrmionic textures are an-
ticipated to produce unconventional spin-electronic functions
such as the topological Hall effect [3]. Experiments have
confirmed their existence in chiral magnets with B20 crystal
structures such as MnSi, MnGe, Fe1−xCoxSi etc. when sub-
jected to small magnetic fields [4, 5]. Competition between
magnetic exchange, Dzyaloshinskii-Moriya (DM) interaction,
and Zeeman coupling to the external magnetic field stabilizes
this unique magnetic arrangement [6–8]. While the exchange
coupling tries to align the spins parallel or antiparallel, the
DM coupling tries align them perpendicular. It has the form
~D · (~Si × ~Sj), where ~D is the DM coupling parameter and
~Si, ~Sj are the spins at sites i, j. For the DM interaction to
be present, in addition to strong spin-orbit coupling and mag-
netism, the system should have no inversion symmetry, mak-
ing certain class of materials special [9, 10].

MnSi, which is a prime example of an itinerant magnet,
develops a helical magnetic order below the transition tem-
perature Tc = 29.5 K with a saturation magnetic moment of
0.4 µB /Mn. Interestingly, the measured magnetic moment in
this system is much lower than the value of 1.4 µB /Mn calcu-
lated by the Curie-Weiss theory [11]. A mixed valence state
of Mn-d orbitals [12] and spin fluctuations originating from
Fermi surface nesting [13] are proposed as possible explana-
tions for this discrepancy. The spin spiral has a large periodic-
ity λh ≈ 180 Å and is aligned along the cubic space diagonal
〈111〉. When a perpendicular magnetic field is applied to the

thin films of MnSi just below the ordering temperature, a new
magnetic phase (called the A-phase) develops, that exhibits
skyrmionic textures [4].

Theoretical studies using density functional theory (DFT)
incorrectly predicts a moment of 1.0µB /Mn [14] and applica-
tion of Hubbard U has been found to lead to a low moment
solution [8]. Exchange interactions in bulk and thin films of
MnSi were studied in order to explain the ferromagnetism ob-
served in thin films of MnSi/Si(100) [15]. Hopkinson et al
considered the electrons in the magnetic ground state of MnSi
to be of dual character [16]; leading to both the local mo-
ment and itinerant conduction electrons that mediate the mag-
netic interaction through RKKY type interaction [17]. More
recently, using a classical spin model with DM terms [18] and
symmetry analysis [19], components of DM vectors with re-
spect to the crystal structure were determined.

In this manuscript, we present results of first principles cal-
culations and construct an effective model Hamiltonian to un-
derstand the ground state configuration and DM interaction
of MnSi. While it is possible to estimate magnetic interac-
tion parameters using first principles methods [20], the model
developed in Part III provides an intuitive picture of the under-
lying interactions and is complementary to such calculations.
We start with the centrosymmetric FCC structure and analyze
the changes brought about by the structural distortion. The
DFT band structure is used to derive parameters for a tight-
binding model, which are in turn used to construct a model
for DM interaction in the solid.

II. FIRST PRINCIPLES CALCULATIONS

Calculations within density functional theory are performed
using the Vienna ab-initio simulation package [21], within the
projector augmented wave method. We use local density ap-
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proximation with a plane wave energy cut-off of 500 eV and
k-space sampling on a 12×12×12 Monkhorst-Pack grid. All
structural relaxations are carried out till Hellman-Feynman
forces became less than 0.01 eV/Å. Effects of Hubbard U
are studied with Coulomb-corrected DFT+U calculation us-
ing the all electron code WIEN2K [22] with the gradient cor-
rected functional [23].

A. Crystal structure

MnSi crystallizes in the B20 phase [6], which has a cubic
cell with a lattice constant of a = 4.56 Å and point group
symmetry of P213. This phase can be understood by start-
ing from the rock-salt FCC structure in which each Mn and
Si atoms have six neighbors and equal bondlengths as shown
in Fig. 1(a) with bond angles of 135◦. A pairing type trigonal
distortion along the body diagonal, in which successive MnSi
units compress and elongate, leads to the B20 structure [24].
As a consequence, each Mn and Si atoms have seven neigh-
bors and three types of bondlengths in B20 phase [25] as in-
dicated in Fig. 1(d). The distortion also breaks inversion sym-
metry.
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FIG. 1. Crystal structure of MnSi in (a) FCC and (b) B20 phases. The
Mn and Si occupy equivalent positions. The unit cell is represented
by the blue cube. Bonding along the (111) direction (dotted lines) in
(c) FCC and (d) B20 structures are also shown. Three different kinds
of bonds in B20 phase are marked in Angstrom. In the B20 structure,
the Mn4Si4 cubes are alternately elongated and compressed along the
(111) direction as indicated in (d).

Although the Bravais lattice remains simple cubic, the sym-
metry is reduced to four 3 fold axis in the FCC phase. Both
Mn and Si atoms occupy the 4(a)-type sites with point group
symmetry C3, with position coordinates (u, u, u), ( 1

2 +u, 1
2 −

u, ū), (ū, 1
2 + u, 1

2 − u), and ( 1
2 − u, ū, 1

2 + u). The internal
atom-position parameters are uMn = 0.137 and uSi = 0.845.
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FIG. 2. (a) Contour plot of the total energy as a function of positional
parameters uMn and uSi. Endpoints of the line joining the two min-
ima correspond to B20 structure while its center corresponds to FCC.
(b) Variation of energy along the line connecting B20 structures.

Despite extensive studies, it is not clear from a local bond-
ing picture, why MnSi and other transition metal monosili-
cides prefer the B20 structure. A Fermi surface nesting
driven instability has been ruled out to be a factor, as several
compounds with different band fillings exist in same struc-
ture [24]. The energy landscape of MnSi shown in Fig. 2,
reveal that the FCC structure is metastable. For the range of
uMn and uSi studied, the two minima marked with circles
correspond to B20 structure with parameters (0.16,0.86) and
(0.34,0.64) related by a lattice translation. The FCC phase lies
in between at (0.25, 0.75) and the three points can be joined
by a straight line with a slope of duSi/duMn = −0.82. Vari-
ation of energy along this line shows the familiar double well
structure as shown in Fig. 2(b) with an energy difference of
1.94 eV per molecule which is in agreement with earlier stud-
ies [14].

B. Electronic structure of the FCC phase

To simplify the analysis of the electronic structure of MnSi,
we start with that of the FCC phase. The primitive cell of
FCC lattice contains two octahedrally coordinated atoms. The
non-magnetic band structure along with the orbital character
and symmetry properties is plotted in Fig. 3. In agreement
with earlier studies, Si-s bands lie below −8 eV [14, 24]. The
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FIG. 3. DFT band structure and density of states for the FCC phase of MnSi. First panel shows non-magnetic band structure with orbital
weights indicated by colored circles: red for Si-s, green for Si-p and blue for Mn-d. The numbers stand for the symmetry characters of the
bands as listed in Table I. Second and third panel shows ferromagnetic band structures for spin and up and down channels and the corresponding
total density of states is shown in the fourth panel. The partial density of states for Mn-t2g , eg and Si-p states are shown in last two panels.

TABLE I. Irreducible representations of the O5
h point group spanned by atom-centered orbitals in the MnSi FCC structure. Points Λ and ∆ are

the midpoints of Γ− L and Γ−X respectively.

L Λ Γ ∆ X
Mn-s L1 Λ1 Γ1 ∆1 X1

Mn-p L2′ + L3′ Λ1 + Λ3 Γ15 ∆1 + ∆5 X4′ +X5′

Mn-d L1 + 2L3 Λ1 + 2Λ3 Γ12 + Γ25′ ∆1 + ∆2 + ∆2′ + ∆5 X1 +X2 +X3 +X5

Si-s L2′ Λ1 Γ1 ∆1 X1

Si-p L1 + L3 Λ1 + Λ3 Γ15 ∆1 + ∆5 X4′ +X5′

Si-d L2′ + 2L3′ Λ1 + 2Λ3 Γ12 + Γ25′ ∆1 + ∆2 + ∆2′ + ∆5 X1 +X2 +X3 +X5

five bands close to the Fermi level at the Γ point originate
from Mn-d, with hardly any splitting between the eg (3z2 −
r2, x2 − y2) and t2g (xy, xz, yz) levels. Si-p bands couple
strongly with d bands at generic k-points and split across −3
eV to −7 eV and 3 eV to 7 eV.

From the symmetry characters [26] marked in Fig 3 and
listed in Table I, one can understand which bands are allowed
to interact at the special points. It shows that d − p orbital
overlap is forbidden by symmetry only at Γ and X points.
As a consequence, a singlet band in Γ15 manifold develops
strong d character along Λ1 − L3 and ∆5 − X5′ directions;
while a singlet d band from Γ25′ develops strong p charac-
ter along Λ1 − L1 and ∆1 − X4 directions, which indicate
strong d− p mixing along these directions, in agreement with
electronic structure calculations. Detailed symmetry repre-
sentations are given in Table I. Mn-s bands are absent from
the band structure, indicating s0d7 configuration for Mn and
s2p2 for Si. Calculated Bader charges using optimized charge
densities also confirm this picture.

Spin polarized density of states (DOS) in Fig. 3 shows that
there is a small exchange splitting of the order of 1 eV in the
FCC phase. The effect of crystal field is much larger, at about
3 eV. Since the splitting at Γ point is negligible, this indicates
that the crystal field potential is highly k dependent. Compar-
ing the band structure and partial DOS shows that most of the
contribution to the peaks in density comes from states that are

close to the zone boundary.
To estimate strengths of orbital overlaps, we constructed a

tight-binding model with five Mn-d and three Si-p atomic or-
bitals as basis [27, 28]. Nearest neighbor Mn-Mn, Mn-Si and
Si-Si electronic hopping matrix elements are included. We
used the DFT non-magnetic band structure in Fig. 3 to fit the
parameters of this 8× 8 model Hamiltonian, which yield, the
onsite energies (in eV) ε(eg) = −1.4, ε(t2g) = −0.8, εp =
1.5, and hopping parameters, Vddσ = −0.35, Vddπ = 0.15,
Vppσ = 1.3, Vppπ = −0.15, Vpdσ = 1.0 and Vpdσ = −0.9.

C. Electronic structure of the B20 phase

As a consequence of the B20 distortion, the primitive cell
becomes same as the conventional cell with four formula units
(f.u.) and the electronic structure becomes more complex with
four times the number of bands. Still, several interesting fea-
tures can be observed in the band dispersions shown in Fig 4.
Firstly, the reduced symmetry in the B20 phase lifts the de-
generacy of bands at generic k-points, however, around R the
bands are similar to the FCC phase, as the three fold axis along
(111) is preserved after the distortion. The Mn-d bands form
three groups with the lower group of eight bands having pre-
dominant eg character, middle group of eight bands and top
four bands with t2g character. Another effect of distortion is
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FIG. 4. The bands of non-magnetic MnSi in FCC (left) and B20
(right) phases in the four-molecule unit cell. Fermi energy is located
at 0 eV. The labels mark dominant band character.

opening of a narrow gap between the top four bands and the
rest of Mn d bands, just above the Fermi level. In FeSi, which
has four more electrons per unitcell than MnSi, this gap leads
to semiconducting behavior for both spin channels [24]. Spin
polarized band structure and partial density of states of MnSi
in the B20 structure are given in Fig 5. Four bands above
Fermi level has dominant Mn-d character indicating that one
hole (per Mn atom) exists in the up-spin channel and while
two holes exist in the down-spin channel. The narrow gap
just above the Fermi level in the spin-up channel leads to a
half metallic density of states, resulting in an integer magnetic
moment of 1 µB .
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FIG. 5. Spin polarized band structure and partial density of states
in the B20 phase of MnSi. In the partial DOS, blue and red lines
correspond to eg and t2g states respectively.

Partial DOS shows substantial contributions from both eg
and t2g characters across the entire energy range of d states
-3 to 1 eV, indicating that there is strong mixing between the
states. Since B20 distortion is a modified trigonal field with
alternate elongation and compression of the MnSi cubes along
the (111) direction, we arrive at the level diagram shown in
Fig. 6, where the cubic crystal field in the FCC structure splits
the d states into doubly degenerate eg and triply-degenerate
t2g states. The trigonal distortion splits the t2g levels further
into a doublet (t±) and a singlet (t0). A convenient form for
these states were proposed by Pryce and Runciman, viz., [29,
30]

t0 =
1√
3

[(xy) + (yz) + (xz)]

t+ = − 1√
3

[(xy) + ω(yz) + ω2(xz)]

t− =
1√
3

[(xy) + ω−1(yz) + ω−2(xz)]

e+ = − 1√
2

[(3z2 − r2) + i
√

3(x2 − y2)]

e− =
1√
2

[(3z2 − r2)− i
√

3(x2 − y2)], (1)

where ω = e2iπ/3. Actually, a small but nonzero mixing be-
tween t± and e± exists in the trigonal structure [30], but it
affects the t+/e+ and the t−/e− states equally, so that the
double-degeneracies (Fig. 6) in the trigonal structure are not
broken. The B20 distortion removes all degeneracies of d or-
bitals as indicated in Fig. 6. The “eg” hole at the Fermi energy
has minority spin character with a strong admixture of the t2g
orbitals, but as seen from the DOS, Fig. 5, the eg character
is dominant for both the majority-spin electron as well as the
minority-spin hole, leading to the simplified level structure
presented in Fig. 6.

t2g
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∆
Mn d

t2g
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e+/e−

t+/t−

t0

Atomic Cubic Trigonal B20

FIG. 6. Level splitting for Mn d states in MnSi, as inferred from the
DFT results, Figs. 4 and 5. In the trigonal distortion, the structure
is expanded (or compressed) uniformly along the cube diagonal di-
rection (111), while in the B20 structure, the cubes are alternately
compressed and expanded along the same direction (see Fig. 1). The
“eg/t2g” characters for the B20 structure indicated on right shows
the approximate character of the orbitals, referring to the cubic basis.

The electronic configuration inferred from the band struc-
ture above is: p1

↑e
2
g↑t

2
2g↑ and p1

↓e
1
g↓t

2
2g↓, which leads to a

|d7p2〉 nominal configuration and a net magnetic moment of
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1µB in the DFT calculations. However, the band counting
shows only that there are five electrons per MnSi formula unit
in the spin up channel, contributed from Mn-d and Si-p, while
it is four such electrons in the spin down channel. Since there
is strong mixture of Si-p and Mn-d orbitals and they form a
joint band, it is difficult to infer the number of electrons in the
p and d orbitals, and a configuration like p1+x

↑ (eg↑t2g↑)4−x

and p1+y
↓ (eg↓t2g↓)3−y , where x and y are fractions of one, is

consistent with the band structure. This is especially so, since
it is impossible to partition charges between atoms in a solid
in a unique manner. This all fits together with the mixed va-
lence nature of the Mn ion, viz., d6 and d7, derived from the
x-ray absorption data [12]. Such spin fluctuation has also been
suggested from recent ARPES measurements that indicate a
nested Fermi surface [13].

Coulomb corrected GGA+U results – We note that, in spite
of the difficulty of partitioning the charges among the atoms
as discussed above, the net magnetic moment per unit cell is
still 1 µB (the integer number coming from the half-metallic
band structure), while the experimental value is 0.4 µB . Our
Coulomb-corrected DFT+U calculations show that the Mn-
d charge remains more-or-less the same irrespective of the
strength of the U value used. This is because the Fermi en-
ergy falls in the manifold of the Mn-d states with the Si-p
states lying far away in energy, so that it is energetically un-
favorable to move electrons between these orbitals. However,
there is a shift of charge between the spin up and spin down
channels and, unlike the DFT results, the bands are no longer
half-metallic, which yields a net magnetic moment less than
1 µB . The actual value depends on the magnitude of the Hub-
bard U and the calculated spin moment agree with the mea-
sured value of 0.4 µB for U ≈ 6 eV, which is a reasonable
value for the on-site Coulomb repulsion for the 3d electrons
and consistent with the earlier DFT+U calculations [8].

III. DZYALOSHINSKII-MORIYA INTERACTION

In this section, we turn our attention to the magnetic in-
teractions between the Mn moments. The helical spin struc-
ture that develops at low temperatures and transforms to the
skyrmionic state upon application of a magnetic field [4] is
known to arise from the interplay of Heisenberg exchange and
DM interactions. Here, we examine the origin of these inter-
actions based on a simplified model Hamiltonian, extracted
from the density-functional results. For simplicity, in the fol-
lowing we derive the magnetic interaction between two Mn
spins interconnected through the Si-p states shown in Fig. 8.
Downfolding the Hamiltonian into an effective ground state
model using perturbation theory, we can derive the parame-
ters J and ~D for the above pair.

It is well known that in the weak coupling limit [31], a two
site, two particle Hubbard model with hopping parameter t
and Coulomb repulsion U , can be reduced to the Heisenberg
form Heff = J S1 · S2, where the exchange coupling is given
by J = 4t2/U . In the case of superexchange [32], where the
interaction takes place through an intermediate site (such as in
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FIG. 7. Effect of Hubbard parameter U on the (a) magnetic moment
and (b) density of states of the B20 phase from GGA+U calculations.
Spin of Mn ions remain close to 1 µB till U = 4 eV and drops to
0.2 µB above 6 eV. The DOS is calculated for U = 6.8 eV.

MnSi), the result is J = 4gt4, where

g =
1

∆2

[
1

U
+

1

∆

]
(2)

and ∆ = εp − εd is the bare charge transfer energy from
Mn-d to Si-p states. Further, when spin-orbit coupling is
present and inversion symmetry is absent, the transformation
yields additional terms such as ~D · ~S1 × ~S2, where ~D is the
Dzyaloshinskii vector [9]. To estimate the strength of D in
MnSi, we consider a typical Mn-Si-Mn bond shown in Fig. 8,
in which the inversion symmetry at the midpoint of the line
connecting two Mn atoms is broken by the bend through an-
gle θ. For this three site model, we write the Hamiltonian as
H = Hd

0 +Hp
0 +Ht +HSO, where

Hd
0 =

∑
jmσ

εdmd
†
jmσdjmσ + U

∑
jmσ,m′σ′

njmσnjm′σ′

Hp
0 =

∑
kσ

εpp†kσpkσ

Ht =
∑
jmkσ

Vjmk d
†
jmσpkσ + h.c.

HSO = λ
∑
j

~Lj · ~Sj . (3)

The sum j runs over the two Mn sites, A and B, m and k run
over the five Mn-d and the three Si-p orbitals, respectively,
and the sum σ runs over the two spins. Here, Hd

0 and Hp
0 are

onsite terms for d and p sites respectively, Ht is the Mn-Si
interaction Hamiltonian, and HSO is the spin-orbit coupling
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within the d states. The onsite energies are εdm and εp, U is
the Coulomb repulsion for the d orbitals, and Vjmk are the
hopping amplitudes between the Mn dm on the j-th site and
Si pk orbitals. In the ideal B20 structure with uMn = 1/(4τ)

and uSi = 1−1/(4τ) where τ = (1+
√

5)/2. This makes all
Mn-Si bond lengths equal to a

√
3/(2π) and all relevant Mn-

Si-Mn bond angles equal to 138.19◦ simplifying the analysis.

z

y
A0

A′
k

B′

B0

A B

p

θ

FIG. 8. A typical superexchange path between two Mn atoms
through an intermediate Si atom. Interaction is mediated by the hop-
ping of the two electrons indicated by the black dots occupying the
orbitals A0 and B0. A′ and B′ are the remaining four d orbitals on
each Mn (other than A0 and B0).

In our simplified model for MnSi, we consider the exchange
interaction to be mediated by the single Mn “eg” electron
at the Fermi energy (Fig. 6), residing on the A0/B0 orbital
(Fig. 8). The farther away an electron is from the Fermi en-
ergy, the less effective it is in mediating the exchange inter-
action, thus in our description only the electron closest to the
Fermi energy is kept. Moriya showed that treating spin-orbit
coupling as perturbation, HSO and Ht can be combined to an
effective hopping Hamiltonian [10] which allows “spin-flip”
hopping between Mn-d and Si-p states through parameters
~Cjk:

HI =
∑
j=A,B

∑
k,σσ′

[
Vj0,kδσσ′ + ~Cjk · ~τσσ′

]
d†j0,σpk,σ′ + h.c.,

(4)
where j0 corresponds to the electron A0/B0, ~τσσ′ are the Pauli
matrices, and,

~Cjk = − λ

2εd

′∑
m

~Lj,0mVjm,k, (5)

where the prime indicates summation over the A′ or the B′

orbitals, εd is the energy difference between A0/B0 and other
d states, ~Lj,0m are the matrix elements of the orbital angular
momentum operator between A0/B0 state and the remaining
four d states at the j-th site, and ~Ckj = ~C∗kj . It is now straight
forward [33] to downfold the Hamiltonian into an effective
magnetic interaction between the Mn moments, with the help
of fourth order perturbation theory:

Heff = J ~SA · ~SB + ~D · ~SA × ~SB (6)

where J and ~D are given by,

J = 4g
∑
kk′

VA0,kVk,B0VB0,k′Vk′,A0

~D = 8ig
∑
kk′

VA0,kVk,B0

[
~CB,k′Vk′,A0 + VB0,k′

~Ck′,A

]
.

(7)

A0

A′

B0

B′

pVA0,k Vk,B0

VB0,k′

~Ck′,A

FIG. 9. One of the superexchange paths from Mn(A) to Mn(B)
through an intermediate Si that leads to the DM vector ~D. If the spin-
flip hopping term ~Ck′,A is replaced by standard hopping Vk′,A0, then
the interaction leads to the Heisenberg interaction J .

The remaining task is to evaluate the expressions Eq. (7)
for the present case. Since the eg electron has equal charac-
ters from the DFT calculations, we will consider the A0/B0
electronic wave function to be a linear combination |A0〉 =
|B0〉 = α1|3z2−r2〉+α2|x2−y2〉 and take |α1|2 = |α2|2 =
1/2. Now, the hopping integrals also become linear combi-
nations, VA0,k =

∑
l α
∗
l Vl,k, where l runs over 3z2 − r2 and

x2 − y2, so that Eq. (7) immediately yields the result for J ,

J = 4g
∑
kk′

∑
lmno

α∗l αmα
∗
nαoVl,kVk,mVn,k′Vk′,o. (8)

TABLE II. The hopping parameters V and ~C for Mn-Si-Mn model
depicted in Fig. 8. Here V ′pdσ ≡ Vpdσ/2εd, V ′pdπ ≡ Vpdπ/2εd, and
only leading terms in angle θ are kept.

A = 3z2 − r2 B = 3z2 − r2
VA0,x 0 VB0,x 0
VA0,y (

√
3Vpdπ − Vpdσ)θ VB0,y (

√
3Vpdπ − Vpdσ)θ

VA0,z −Vpdσ VB0,z Vpdσ
~Cx,A −i

√
3λV ′pdπ ŷ ~CB,x −i

√
3λV ′pdπ ŷ

~Cy,A i
√

3λV ′pdπx̂ ~CB,y i
√

3λV ′pdπx̂
~Cz,A −iλ(

√
3V ′pdπ − 3V ′pdσ)θx̂ ~CB,z iλ(

√
3V ′pdπ − 3V ′pdσ)θx̂

A = x2 − y2 B = x2 − y2
VA0,x 0 VB0,x 0
VA0,y Vpdπθ VB0,y Vpdπθ

VA0,z (−Vpdπ +
√

3Vpdσ/2)θ2 VB0,z (Vpdπ −
√

3Vpdσ/2)θ2

~Cx,A iλV ′pdπ ŷ ~CB,x iλV ′pdπ ŷ
~Cy,A iλV ′pdπx̂ ~CB,y iλV ′pdπx̂
~Cz,A −iλ(V ′pdπ −

√
3V ′pdσ)θx̂ ~CB,z iλ(V ′pdπ −

√
3V ′pdσ)θx̂

The hopping matrix elements are easily evaluated using the
Harrison’s Tables, which are listed in Table. II for small θ,
which is about 20◦ in MnSi. Plugging these in Eq. 8, we find

J = 4g|α1|4V 4
pdσ +O(θ). (9)
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To calculate the DM vector, we need to evaluate the matrix
elements of orbital moment vector ~L, which is given in the
cubic basis {3z2 − r2, x2 − y2, xy, xz, yz} as:

~L = i


0 0 0 −

√
3ŷ
√

3x̂
0 0 −2ẑ ŷ x̂
0 2ẑ 0 −x̂ ŷ√
3ŷ −ŷ x̂ 0 −ẑ

−
√

3x̂ −x̂ −ŷ ẑ 0

 . (10)

The calculated effective spin-flip hopping parameters ~C
[using Eq. (5)] are also listed in Table. II. Again, we have
the identity ~Cj,k = ~C∗k,j where j = A,B. A close inspection
of the Table II and Eq. 7 shows that the dominant term in ~D
is linear in θ and originates from the coupling of 3z2 − r2 or-
bitals through the pz orbitals of the intermediate site. Keeping
the leading terms in the angle θ, the result is

~D =
8g|α1|4λ

εd
V 2
pdσ(3V 2

pdπ − 2
√

3VpdπVpdσ + 3V 2
pdσ)θx̂.

(11)
As expected, the ratio, D/J ∼ O(λ/εd), is propor-

tional to the spin-orbit coupling strength. As pointed out by
Moriya [10], the DM vector must also obey certain symme-
try properties in the crystal, such as being perpendicular to
the plane containing the bonds. Thus, the axial vector ~D lies
in the direction of ~rAp × ~rAB , where ~rAp and ~rAB are vec-
tors connecting Mn(A) with Si and Mn(B) respectively [34].
Thus, for the superexchange path shown in Fig 8, ~D is along x̂
in agreement with Moriya’s symmetry rules. For all bonds in
the ideal B20 structure ~D has same magnitude and points per-
pendicular to the plane containing the two Mn-Si bonds. (In
the real structure, the Mn-Si-Mn bond angles are somewhat
different between different triads, leading to slightly different
strengths of ~D.) Note that between any two given Mn spins, ~D
can be zero, if there are two symmetric superexchange paths
such that there is an inversion symmetry at the center of the
line joining the two spins.

As expected, the exchange coupling J has a term indepen-
dent of θ, while the lowest order term in ~D is linearly de-
pendent on θ. This confirms that when inversion symmetry is
present (θ = 0) we will have a finite exchange coupling but
no DM coupling. We can estimate the magnitudes of J and D
using typical parameters obtained from the tight-binding cal-
culations: ∆ ≈ 3 eV, U ≈ 6 eV, Vpdσ ≈ 1 eV, Vpdπ ≈ −0.9
eV, λ = 0.037 eV for the atom [35, 36], εd ≈ 2 eV, and

θ ≈ 20◦ leads to the numerical values: J ≈ 55 meV and
D ≈ 6.1 meV, so that the ratio D/J ≈ 0.12. The helical
structure in MnSi is 180 Å long which is approximately 40
unitcells, which suggest k = D/J = 2π/40 ∼ 0.16 [37].
Considering the crudeness of our model, the agreement with
the experiments is reasonable.

IV. SUMMARY

Using first-principles and tight-binding methods, we stud-
ied the skyrmion compound MnSi both in the B20 and the
ideal, rock salt structure in order to gain insight into the elec-
tronic structure and the origin of the Dzyaloshinskii-Moriya
interaction. The B20 structure is formed by the alternate elon-
gation and compression of the ideal MnSi cubes along the
(111) direction, which breaks the inversion symmetry leading
to the DM interaction. In both structures, strong coupling be-
tween Mn-d and Si-p indicate a mixed valence |d7p2〉+|d6p3〉
state, as suggested by the x-ray absorption data. The density-
functional calculations show a half-metallic band structure,
which leads to an integer magnetic moment 1 µB per Mn ion.
However, the Coulomb-corrected GGA+U calculations redis-
tributes the electrons between the majority and minority spin
channels, and for U ≈ 6 eV, the calculated magnetic moment
drops close to the experimental value of 0.4 µB . We derived
expressions for the exchange and DM interaction between the
Mn atoms using a three-site model and find that the leading
term in J is independent of the bond angle θ, but depends on
the fourth power of orbital overlap Vpdσ . The magnitude of
the DM interaction ~D, however, depends linearly on both the
bond angle θ as well as the spin-orbit coupling parameter λ,
which leads to a vanishing ~D in the cubic phase, as expected.
Our results provide insight into the electronic structure of the
B20 phase and will hopefully lead to a deeper understanding
of the skyrmion phase observed in this structure.
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